外部张量函数
备注
单击 此处 下载完整的示例代码
作者:Tianqi Chen
虽然 TVM 支持透明代码生成,但有时也需将手写的代码合并到流水线,例如对一些卷积核使用 cuDNN,并定义其余阶段。
原生 TVM 就支持黑盒函数调用。具体来说,TVM 支持所有与 DLPack 兼容的张量函数。这意味着可以使用 POD 类型(指针、整数、浮点数),或者将指向 DLTensor 的指针作为参数,调用任何函数。
from __future__ import absolute_import, print_function
import tvm
from tvm import te
import numpy as np
from tvm.contrib import cblas
import tvm.testing
if not tvm.get_global_func("tvm.contrib.cblas.matmul", allow_missing=True):
raise Exception("Not compiled with cblas support; can't build this tutorial")
使用外部张量函数
以下示例用 te.extern
来添加一个外部数组函数调用。外部调用声明了输出张量的 shape,第二个参数给出了输入列表。
用户需要提供一个描述如何对结果进行计算的函数。计算函数获取输入和输出的符号占位符列表,并返回执行语句。
这种情况只需调用一个注册的 TVM 函数,它会调用 CBLAS。TVM 不控制外部数组函数的内部,将其视为黑盒。可以进一步混合可调度的 TVM 函数,为结果添加偏差项。
n = 1024
l = 128
m = 235
bias = te.var("bias", dtype="float32")
A = te.placeholder((n, l), name="A")
B = te.placeholder((l, m), name="B")
C = te.extern(
(n, m),
[A, B],
lambda ins, outs: tvm.tir.call_packed(
"tvm.contrib.cblas.matmul", ins[0], ins[1], outs[0], False, False
),
name="C",
)
D = te.compute(C.shape, lambda i, j: C[i, j] + bias, name="D")
s = te.create_schedule(D.op)
验证结果
验证结果是否符合预期。
dev = tvm.cpu(0)
f = tvm.build(s, [A, B, D, bias], "llvm")
a = tvm.nd.array(np.random.uniform(size=(n, l)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(l, m)).astype(B.dtype), dev)
d = tvm.nd.array(np.zeros((n, m), dtype=D.dtype), dev)
bb = 10.0
f(a, b, d, bb)
tvm.testing.assert_allclose(d.numpy(), np.dot(a.numpy(), b.numpy()) + 10, rtol=1e-5)
外部 Contrib Wrappers
TVM 为外部调用提供了外部contrib Wrappers,以下代码与前面的示例等效。
from tvm.contrib import cblas
C = cblas.matmul(A, B)
D = te.compute(C.shape, lambda i, j: C[i, j] + bias, name="D")
s = te.create_schedule(D.op)
将 Python 函数 Hook 为 Extern
由于可以调用 TVM 中的任何 PackedFunc,所以可以用外部函数回调到 Python 中。
以下示例将一个 Python 函数注册到 TVM runtime 系统,并用它来完成一个阶段的计算,这使得 TVM 更加灵活。例如,可通过插入前端回调来检查中间结果,或将自定义代码与 TVM 混合。
@tvm.register_func("tvm.contrib.my_tvm_addone")
def my_tvm_addone(x, y):
print("my_tvm_addone signatures: %s, %s" % (type(x), type(y)))
tvm.nd.array(x.numpy() + 1).copyto(y)
A = te.placeholder((n,), name="A")
B = te.extern(
A.shape,
[A],
lambda ins, outs: tvm.tir.call_packed("tvm.contrib.my_tvm_addone", ins[0], outs[0]),
name="C",
)
s = te.create_schedule(B.op)
f = tvm.build(s, [A, B], "llvm")
a = tvm.nd.array(np.random.uniform(size=(n,)).astype(A.dtype), dev)
b = tvm.nd.array(np.random.uniform(size=(n,)).astype(B.dtype), dev)
f(a, b)
tvm.testing.assert_allclose(b.numpy(), a.numpy() + 1, rtol=1e-5)